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SUMMARY

Title : Development of gene mining system

Objectives

To support the researchers working with the crop related species, we aimed providing
valuable information at a goal of the first step of the CFGC project by using and analyzing
public plant EST sequences, microarray data, proteomic data, and protein interaction data. As
a result, we developed the softwares for the microarray analysis and the peptide mass
fingerprinting (PMF). We also constructed the systems for the predicted regulatory motifs of
co-expressed genes from the results of microarray experiments, plant function catalogs, and
EST analyses of crop-related species and nine representative plant species. In addition, we
constructed the integrated systems on the basis of gene function catalog inked with
microarray and PMF data reciprocally. All of our results are freely available at
http://crop.kribb.re.kr as a global integrated web interface.

Background

ESTanalyses Functioncatalogs

The gene analysis based on ESTs involves clustering and assembly of EST sequences,
chromosomal mapping of consensus sequences obtained from clustering and assembly, and
finally gene annotation process. For the EST clustering process, we used StackPACK software
from SANBI to make virtual mRNA candidate with high coverage and high quality. To
analyze these sequence data further, these process are needed as follow: homology search of
consensus sequences using BLASTX against NCBI NR database, protein function
categorization according to MIPS (Munnish Information ) and Gene Ontology(GO) catalog,
chromosomal mapping using sim4 tool and the upsteam sequence analysis obtained from
genomic mapping. We applied the public softwares such as Gibbs sampling, Multiple EM for
Motif Elicitation (MEME), and TRANSFAC to our research for promoter analysis.

DNAchipanalysis

In the case of clustering analysis of microarray study, validation is one of important data
processing step. The notion is generally accepted that co-expressed genes are under the
same transcriptional control and are probably categorized into same or similar functional group
biologically or biochemically. Thus, the efforts to find common regulatory motifs in their
promoter region, or functional grouping the genes in the same cluster are common process for
the interpretation and validation of microarray data.
Peptidemassfingerprinting

Public protein sequence database such as SWISS-PROT is used practically for the
protein identification from the result of Matrix—Assisted Laser Desorption Ionization-Time Of
Flight (MALDI-TOF)data, which is one of popular proteomic studies. However, for the less
of protein information for the specific plant species in these databases it is needed to
construct the private protein database containing sufficient protein information for interpreting
massive PMF results about each specific plant species. Thus we tried to make the protein
database by translating enormous coding region sequences obtained from EST analysis and
the PMF software working on these databases.

Therefore, in this study, we tried to make the individual systems about EST based data
analysis, regulatory motif information from chromosomal mapping of ESTSs, microarray data



and PMF information from bench works at first and finally integrate these individual we
constructed the web-based integrated systems in which the results from gene analysis,
microarray analysis, and proteomic analysis are reciprocally connected and complemented with
each other.

Conclusion

We developed the integrated systems based on the gene catalogs from EST analysis
results which are reciprocally connected with microarray analysis data and PMF data. Gene
function catalogs help making customized ¢cDNA microarray and the output of microarray
experiments are directly analyzed on these system. In addition, the data from MALDI-TOF
can be easily explained in our systems in an interactive mode with EST based information,
microarray based information and vice versa.
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A 1A IRETA Y Jle

e AA A7t BASEEA ESTE o83 #8& §24 w2 g I+ diF 344
B FdE B7] 943 Microarray A0 w2 £ 2gjo] d@siA Hojoksta gild B S
gt Peptide mass spectrum #4 9] Fo] 4% d%o] Ho F34 75 A7 424 7]
77} 5l Aolthk E3) EST#dE A7+E Human 5009HA o)A mouse/rat 4005+ 014,
W& EST& oF 200%kziol4 vls NCBI GenBankol| F7j=lo} Sitk whaebr 71¢ S83 A
dAe 34 7% AT7) BEAAY BA 1593 P 270 AAHT 9o o
@ 32 BER e Aol ol dE A7k FHANE 43F AHE o]
A sie} FUHE ESTE AAHeR A7ste wAe 752 Wiled 289 AR
ST LR e UH T8E Aty A,
ZFo 2 2434 g =& EST databasest ©7] 814 AAY & o}d ge{AA &
£ X§sta Ut FF vl ol Ejw o o Sl gke] EST HH I} &
813, Holx 3 A4S AEH Holeue] 27k gtk EST MG A2 the BEFoht A
,7]101]7‘1 T E §ARE V= DNAGH N9 ¢jo] B X (tag)E A7) Aol
54 DNAZ R H 383 958 $ohe v 28575 813, drug 715
.ESTE o} 300-500bpe] DNA A& 27+o. iiﬂ 4HE fAR Y BEEe Y
‘}241 glo] £91 Aotk EST wlojewol 2o & B2 2 & FAAEC] TFH | Y& Aol
] Q‘”E}(Baﬂleul et al., 1997; Lin et al., 1997 Wu et al., 1997; Yamada et al., 1997).
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EST vlolEfW o] 27} i F o2 FFH I YA T, o] H & tlo|HEL 7T H A G2 e oA
 Ued 22 F 7HAY vEEH]] ofE /A1 Utk AA, ESTe & WEe =
sequencing-2 =8 &} & 7] ] £ ol sequencing error£-©] ¥t} E 4], EST "l o] ¥ &A= 3 §-3
e R Fo|BFE MEZH FE3] FE B F A3, o] TEA (redundancy ) E o] 7t
THA B2 EST vlolHHol2e HIEE A Y 4 3 Qith o8& SEA S Beste 28T
WS 2L FAAERE F o€ EST clusterE& RolA & o 7 749 (DNA M E& BHE
= Aot} Z+zhe] EST "o E Hthe= assembly 2+ 8 A3 consensus sequence?] ¥ 71X &
Fol Aok AA, £43817] 98 MES E0] 93 € 5 Ath EA, Zopd HEL 449

ESTHO O 2%, 29 M98 A48 & 9t O Be /4% WEsmnslch A, 2zt
ESTo| E£A15t% error7} assembly? A& A= 5 83 AAE & Aok U, 7139
cDNAX E-& A3 d A cloning® = J & full-length & 7} A= 3
NCBIo| A 7§23t UniGene2] EST clustering & A& /A A LukHQl
clustering=} g 7t 42 ¥ cluster 2 FE] consensus sequenceE 43R = &+
and Schuler, 1995 ). # A A 74 ( The Institute for Genome Research, TIGR )= w-$ 4 A3
clustering Wl S & -8-3} ] 843 consensusE =& A &2 AFE-3H) ( Quackenbush et al,,
2000; Quackenbush et al., 2001). FolZ 2] 7} R A E AR 874 (South African National
Bioinformatics Institute, SANBI ) ¢|STACK ( Sequence Tag Alignment and Consensus
Knowledgebase ) 94 = UniGene} TIGRY] ¥ A| 28-S o] 88} clusteringS A|=313L
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.ST ACKA clustermg Al 22®-2 Joose clustering® & ]88} Kt} 71 consensusi €
THEold 4= 9l 3 alternative splicing formS o &8 = 9l ¥HH, paralogZ} £3E & 3l
g= w3 o] ) E}. o] &gk A| 2H-S o]8-3}ed masking, loose clustering, assembly, alignment,
alignment analysis for variation & 93 dd9 #FAAES AYdle ZT2a™d 71X
StackPACK-& W] &9k t}. StackPACK Y] clustering-S 37} %] 34 ¢ 2 Z3)o] Hr} ( Ramesh et
al., 2002) TH] A 2 Z vector sequenceE A A oF-S A WA FAHOZ d2 cluster T2
o] &3l fAFAI & HHEL O = loose clustering% Al &) gt d2-cluster= £ 9] A€ vl
A2l E 3 o2 word-based WHH S AFE3LA, H A3 99% 2] sensitivity 9} selectivity & 7}
A, o ESTE w= 7 clustermg‘—__} 4 111, alternative formE d|&sl=d E& & ol
219 v} It} (Burke ef al., 1999 ). % 5} B oj A= PHRAP T2 18-S o] &3] 24zt
clusterol] £3ESTE S assemble 3= Zdo] P At A HA 3L CRAW Z 21388 9]
-§-3} o] alternative splicing sequencet} 22 A 2}9] {ALSH variantE-& T3 We #48&
ARt} (Miller et al., 1999).

Functional category+= genome©] A 3}A B3 XX @& A3olA £ HA 29 genome
structureE 43} 4} & ] §-8 3 database £ A}-& ¥ t}. Gene Ontology (GO)-E GOE &4
2}+9] 71%5-& Z Almolecular function, biological process, cellular component &] BF2 531
Zyzte] W ol AlF A <l controlled vocabulary & &3 31t} o] & HF= A2 vlebdQd Ao
oby 7] W&o, shte] KA FAA] 2HEo] Al 7] €] categorydl] Z+Z} annotation®] o] ¥
el AAA FHA A& EA8E genome annotationg QAT3teEH E&H ot} (
Ashburner et al., 2000 ). MIPS (The Munich Information Center for Protein Sequences )&= ©]
1] &8 A protein function® F ¥ t1kst B o7 n# syt B AT A o A= Plant
112 1379+ A& B A3 Microarray , peptide mass spectrum, gene index £4 235 §3%
3l7) Yt A7 ANE, F, 8 5L 1o o A2E B4 S st FRs AT

% Microarary 2-& 2% F2 15 #8% dol8 £4& At 71M @78 232 7|
B A= ol 2 ofd o] £4 0] 83 StH T 22y microarary HlolE £4& HS
48 TIPS AHEEI Ao W 7150l st I AREALY Al oy AR S ¢
F T A FriHe g &8 o] gl7] W&ol BioConductZld & o]-&3 A S/WE
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et oju] R 28] @A (Preprocessing), A 73} ¢HAl (Normalization), #8521 A} &
AH FZ DA (Diffrentially expression gene), E#123 A (Clustering), BF ©A
(Classification) 5ol & A HA & AHEA7L HA 888 + AEF HLsiH o A28 &
12ES F7HE F IA FNE Rlanguage2 7 E3t Ao
Z2HE Eokl UM ofF IldlA diFY dHolHe
Post-Genome$d 7+ Holol A 71& 712 & 94 7|&2 8531 Q)
AR AA JdE 22 ool glg A Ul §-31A4 A7 ‘:’_}"‘—H 24 4
ol zo] ddEt B AA AT GE vlolHE AT T A AFT
olt}.
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Gene Index : Browsing

Introduction, .
Plant

D5talstics & Arknowladgement
LGene Indexes Browsing/ Table
@By Tisue
Totd § Species Unigue
DicotyledonfMonocatyledon
@By Species
.~U2 Lnicug stk z.r.z |y Cryza gativa |
DSeach Gene Indexes .
OBy Keyword Belerence: ohen| 2C2G74dcN1]
¥ REywOn Jinghui ihans, Zh Ca7057.1, Y7
@By User Senuences “Gapped BLAST and| AUIDI36B3 1, AU
@Function Catenorization proarane’ Mucle ég“;gjﬁgg
Guery= c|2ctgad
OpyFact T0TAL gsre.e: | CCGCGABCTCCTCY
Lplire Yariation ﬁg&}ﬂsz&% GTCRGAGACCGAGA
OGS Candidate AL0SB345, 1 AUTEA) %éég?%amg}
b 3 (686 et
D ategrrired EST Subsot GGAGCTGITCATCY
PSubwet Display Database: /dbs/q TGGIGTCGGCATGA
@wmgéx& 67,841 GACCAAGBAGTTCY
Searzhin TBGYETCELGTTE
f1onad Seeere CAATGACBACGAG]
JGATACCTCTGET
CAGCTGGAATANCY ;
"W" & proguci L R

KSPEPPERSKChip

911417154)5p|P331 26! HSB2_GRYSA HEAT SHOCK PROTEIR B2 >d
91151239101 enb [CAAGTISN. 1 (X98582) HSPAO-2 [Triticue 4
gi | 547633| sp| 36181 |HSBO_LYCES HEAT SHOCK COGNATE PAOTH
9i(4204359] gb|AADI 1549, 1) (L55859) heat shock protein g
9i[15241116iref INP.200414, 1| (NM_124385) HEAT SHOCK PRd

>9i |417154) sp | P33126{HSB ORYSA HEAT SHODX PROTEIN B2

pir{iS2564] heat shack protein B2 - rice {straln Taich

eab[CAATTII7E. 11 (211920) heat shock protein 82 {HSPER,
Length = 699

Score = 341 bits (8B5), Expect(2) = 3¢-95
Identities = 174/175 (SB%), Positives = 175/175 (9B%)
Frame = +2

Duery: 116 MASETETFAFQAEINGLLSL | INTFYSNKE|FLREL | SNSSDAL
MASETETFAFUAEINQLLSL | INTFYSNKE| FLREL | SNSSDAL

Sbjet: 1 MASETETFAFGAEINQLLSLIINTFYSNKE|FLREL | SNSSDAL

BLASTN 2.1.2

Reference: Altschul, Stephen F., Thowas L. Madden, Alejandro 4. Schatier,
Jinghui Zhang, Zhena Zhang, %ebb Willer, and David J. Lipman (1897),
“Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs”, Nucleic Acids Res. 25:3389-3402.

Query= c12ct9744cn1 1567 COVERAGE:D.98; CRA#ID: 1; TOTAL_ESTS:14:
ESTS:£72882.1,C97057,1,£87760. 1, AUOG2934. 1, AUOED4BE. 1, AUDESS39. 1,
AUDE3541.1,4L083612.1, AUDI36BI. 1, ALIOSS1 24, 1, AUDSS1 38, 1, AUDSE25. 1,
4098346, 1, ALIBAIBB. 1; LENGTH:686bp; WAP: ; ALT_CONSENS::{

(656 letters)

Database: /dbs/Unigene/Plant/0s,seq.unig
16,697 sequences; 9,507,358 total letters

Searching. ..o done
Score E

Sequences producing sisnificant afignments: (bits) Value
gn! | UG 0s#5113444 Oryza sativa HSPID-|ike protein mPNA, complet.., 450 e-126
gn} HUG] 0s4551237 Oryza sativa HSPD rRMA for heat shock protein... 50 5e-06
ani LG 0s#5112963 Oryza sative {japonice cultivar-group) OsCycD... 34 D.32
gnt |UGH0s#S107064 ACDGEDE Oryza sativa tOMA /clone=AODGECE /gb=... 34 0,32
anl [UG10s#323001 AUIGEA48 Oryza sativa cONA /clone=C12442 /ab=h... 34 0.32
»gn| | US| 0s#5113444 Oryza sativa HSPSO-1ike protein mR¥A, cowplete

tds /cds=(B7.887) /eb=AYDTTBIT /gi=21235743 fug=0s.10259

Flen=831

Length = 831
Score = 450 bits (227), Expect = e-128
Identities = 355/399 (B5%)
Strand = Plus / Plus
Query: 115 catggegte gttcgect c gctatecct 174

t
SHUCE THTTERE SRR R R R T DI e 4t
Shjct: 385 catggertrggesacgeegargttogeet toeaggcgaasat caaccagetsetategct 425

_18_




Gene Index : Search

Introduction

Plant

Ghtatistics & Acknpwiedgemant Tabie

GGere Indexes Browsing/Table [Gryza ssiva
LBy Tissue

Totd f Species Linigue
DicotyledoniMonocotyledon

@y Spedes o Lrice BLAST

Search by Keyword

@ Search Gere Indexes

BBy Reyworg Choose program to uge and database to search:

Hoaa : : {iasin ] Shabbane L

By Usar S Tiogram niagtn i avavbaAc . ot
@Func Categ ¥ Enter seguence below in FARTA format

GPRyFact COTLIDUTAATELTAGCCOUCHILBUA ROCBIARCOGTS ROCGUECRT BT CTLLTUERE ;:“g
GSplice Variation COROGAGCTCCTLT TO00BUA00GARAGA TCARRR GLATOAAGGORCEURRCATHGS

’ 67 CRGAGALLGAGACAT TCR0CT TCUAGROCGARA TCAACCAGCY GLTGTCCCTCATEAT §
QDS Candidate camc:cnmcrmams&mrmrccrm&ﬁ%mmﬁg&iﬁ
in TBCAT TEEATALGAT TAGGT TLGAGABED T CACRBRACAK ABLTCGE

BCategorzed EXT Subset A 0T 6T 04T COADA T TRTCCCCRACAAGEET ABCAAEACCCTINT CGk TCATERACAS

@Subset Display Ortead Riomdisk] LSS §

SDownioad Beach

The query seguence is fised for Iow complesdly regions by default

Fiter ¥ Lo compievily 7 tdask for due sabils onle {7 Parions ungapped sfigomment

Exrocs i m

Py ]—Bma

Sandard (1 =
Fram i f W

Lrhe: advenced ontions! [—

Tanry 6

¥ Graphicsl Dandew

film—i

i

iNc‘coior schems ~§

Y heeraEe

Gene Index : Function Categorization

Introduction
Plans

LFENSISIRS B Acknowiedgerrent
@Gere Ilexes Browesing/ Table - N _ N . p
Ry Tissue & [ Dryze sgive - 07101 amino-acid ransporters §
Total { Spevks Unius :
Licotdedonienocotyledon
WBY Speces
Totd { Thsue Unigue
Rearch Gene Irderes
BBy Kugerord
S0y Lse Seg

1 Oryza sativa

(Senondeary Catalog] { Orvra sative -

| TRANERPGHT FACILT;

WPRAT
DSplce Variation
DB Carwhdate
@iatagorient EEY Subset
dEubset Displey
Glownioad

T AR

e AARE

i BAPE

_19_



Gene Index : CDS Candidate

in 3

Plant
GStatistics & Acknowledgemant
GGene Intexes Browsing/Table
@By Tissue
Total f Species Unigue
Ticotyledon/Monocotyledon
@By Species
Total f Tiesue Unigue
@Search Gene Indexes
LBy Keyword
@By User Sequences
Gfunction Categorization

ategonized EST Subset
QSubset Osplay
Showriad

Human

S SPEPRERSLO K

Ensembl -y

CDS candidate
{ ryra satva |

1felziaistelrielelin] 88T

P Oryes sytea

Corsersas I S | Frams SOCE v
i Foals 31 | omsa
D4 oEcsdsdminse ot Rk %
H ) TREE05 +3 CRYSE
10 s ORvEA £+
2 CRCBANSNL 1206 i gesoe +1 | Fke &
1840175 1 Cryza sativa (ponics © ir,
485518 42 Piee '
¥ decIesaEnlizee 1062 +2 ] s il &
TS L Tryea sativa {aporita © @ ;
45518 w1 Fica o
4HES1E i +3 Rices ¥
18408062 1 Aradcieres thalias s,
4 0 ReSeNLIzeT : S : e &
PIB404062 4 43 U Arabidomes thallang
2XIFOTER i | Oryza sstive (aporia o %
FBBOTI 1 4B Oryea satwa faperia © -
21740572 | 41 Cryza st
5 clteselonims ITOSER | 41 | Orv st
21740871

Swiss-Prot

- 20 -



Gene Index : Alternative Splicing

Intodudtion e Splice Variation
25 A
B Statistics % Avknowdedgement
Cere Indesys Browsing/Tshie
By Tissue
Terd f Spedies Uniaue
DicotyledoniMonoratvadon
$By Species 4 £
Tatd f Tissue Lricue H /
@ e . ) . ]
z:?:aywaémm Splice Variation : Cryptic exon
@By Uspr Sequences { Qryen sativa |
“@Function Categpuristion

a5t th

ks vl

&

i dats

“BCategorioed ST Bubsst
WSubset Display = CROTIHRLLIES
@lnyverdoad

Human

Monse

CPEPPE s 5

Terserms D H

eyt

proseyisata]

Ensembl-vaxon 30 oRonmRensd
Swise-Prot

Link %3

_21_



1}, Peptide mass spectrum #41-% 93 Z2 33 /jg A3

ZT2HE A7 oM 7PE Bo] &85 += MALDI-TOF 40 U2 awld 2o
et NES Este 24 7[Hoz old Zu 93 Jgo] 2oy AFEA @ Ao
2 g0z vild 435 Zg 2 V)F s Ay ZFste 7)so] gdiEol Ui A

ol .

MALDI-TOF&?

Ao AE AFEAEF shied 2zt dustn wud 2L nEAe
432 wEn AU 34T 5 Q=S 1AF0] Yo nBAE oL
& MALDIS} o238 nExe] 432 243 F2 TOF, ¥ »Ro=

UE & 3

MALDI : matrix assisted laser distortion/ionization
23] d A4S FAT dE tuygl 3olx T o3 JidE W

=
oltt, AEA F wH g HHG ﬂﬂ‘jz‘(matrix)ﬂr A Aege 7

)
o,
ed
2
lﬂl
%N
>~
,‘.d
ol
S
&
fSl
z
M
S
&
2
o
Bu)
=
2
e

TOF: Time Of Flight
ety 249 AL A%
) 2=

33 o)
GA e ko] AF 2o 83
w
Laser
’“?g&'ﬁ%w
Drif Tube (1.2 malorsy ﬁ§m¢§;ﬁw
o
#
hadre
t »
T
S e °

A3l lorn e Tormed sony spresd out
duming laver pulse Lighdsy = Faster
npact Hemder = Sigwer

- 22 -



Improved algorithms for the identification of yeast proteins and significant

transcription factor and motif analysis

Peptide mass fingerprinting S/WIljgt & DB & &=
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With the rapid development of MS technology, the demand for more sophisticated MS
interpretation algorithm hasgrown as well. We developed advanced molecular weight search
(AMWISE) that makes up for the weakness of molecular weight search (MOWSE) and fingerprinting
using binomial distribution (fBIND).

AMWISE and fBIND improved the performance up to maximum 49% and 2% as compared
to the established algorithms, respectively. Moreover, we also suggest the statistical approach to
define the significance of transcription factor and motif in the identified protein based on the Gene
Ontology (GO).

As the tendency in biology researches has been moved from analysis on few genes/proteins
to macroanalysis on more extensive genes/proteins, MS has been recognized as key biotechnology. In
particular, MS can be considered asthe most important tool in performing proteomics to understand
biological phenomenon of living organisms at the large-scale protein level. Accordingly, a number of
recent researches presented several software and algorithms that can effectively analyze the results of

MSand relevant researches have been actively continued [1-3]. While PepSea and Peptldent/
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Multildent identifiedproteins on the basis of the number of matches between peptide molecular weight
in database and peptide from experiments, they didn't support accurate analysis [4-6]. MOWSE used
scoring method that reflected characteristics of database beyond simple matches as calculating
frequencies of peptide generated from proteins at 10kD intervals [7]. The researches based on
probability are MASCOT that identifiedmore reliable analysis as calculating the probability that
random hit could occur, ProFound that calculated probability values of proteins using Bayesian

approach and research by Wool ef al that made scoring method using binomial distribution [8-10].

While MOWSE scoring algorithm that is widely used in general is simple and relatively
accurate, it has the limit to depend on relatively large masses among peptide fragments in experiments.
In accordance with the research by Pappin er al., most proteins are distributed around 50kD and
peptides created as cutting these proteins in trypsin are mainly small fragments [7]. As reported above,
yeast proteins also showed the same distribution (data not shown). While most peptides from
experiments are small fragments, fragments don't have substantial effects on MOWSE score, but a
small number of fragments with relatively large molecular weight fragment significantly influence on
MOWSE score. As shown in Figure 1(a), for the performance of MOWSE scoring, its accuracy is
substantially decreasedwhen molecular weights of peptides are small. This phenomenon is also
appeared according to intact molecular weight of protein as shown in Figure 1(b). The reason is that
proteins with larger molecular weights create more peptide fragments and on thisoccasion, a number
of fragments with lower molecular weights are generated. This MOWSE scoring algorithm is also
applied to other peptide mass fingerprinting (PMF) programs such as MASCOT and MS-Fit [8, 11].
Although scoring algorithm in the research by Wool ef al. was based on relatively simple probability,
its performance was very remarkable as shown in Figure 1 [10]. It demonstrated uniform accuracies
regardless of peptide fragment ranges and intact molecular weights of proteins as shownin Figure 1.
However, its accuracy tended to be slightly declined because of repetitive sequences. Accordingly,
this study developed AMWISE and fBIND to identify proteins more accurately as making up for

disadvantages ofexisting algorithms.

Peptide pool to analyze PMF was generated using SWISS-PROT 4.2 release and
nonredundant (nr) of NCBI. Then, only yeast proteins were collected in SWISS-PROT 4.2 and NCBI
nr and then, theoretical peptide pool created by trypsin activity was built up. This peptide data set
consisted of only peptides in 500-4000Da that was experimentally significant among molecular
weights of peptides. Moreover, in consideration of errors caused by biological experiments, this study
assumed the missed cleavage level of trypsin to level 2 and peptides generated on this level were
included in peptide pool. Next, peptide pool generated by the process above and data related to yeast
protein were used to construct database using MySQL 4.2.13 DBMS. Yeast proteins in the database
were 5,406 for SWISS-PROT 4.2 and 9,007 for NCBI nr. Peptide pool generated by trypsin consisted
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of 718,106 and 1,040,173 records for SWISS-PROT 4.2 and NCBI nr, respectively.

Scoring method used in AMWISE is the same as MOWSE in the aspect that both of them are
based on frequencies of fragments generated as dividing intact protein molecular weight and peptide
molecular weight by the unit of 10kD and 100Da, respectively. However, scoring method in
AMWISE calculated weight scores of each peptide molecular weight using the expressionbelow and

then, the weight scores were included in scores.
On the assumption that theoretical peptide mass of it/ hit of protein K is 7 and " is

included in /" peptide range and th protein range,

Fy= frequency of fragment range j and intact protein range &, 5=j=40, 0=k=N,

N = maximum of intact protein molecular weight/10000

Vie = F/max{Fy Fg ... Fy }

N
W =log,, szk
k=0

n

LD o,

Score of protein K = mean of intact protein molecular weight X -_j

molecular weight of protein K, n = number of hit

Like the research by Wool et al., scoring method in fBIND calculated probabilities with
respect to binomial distribution as described below and applied overlap penalty to reduce impacts
from repetitive sequences and proportional relation between molecular weights of proteins and the

number of peptides [10].

N N- k
P(N,r)=(r jp’(l—p) "xe

N = total number of peptides in a protein
r = number of random match
p = number of match / number of peptide in database

k = frequency of overlapping match in a protein

Next, the results by AMWISE and fBIND were compared to those by MOWSE and
researches by Wool et al. in order to evaluateperformances of AMWISE and fBIND that were
modified above. The test sets for analysis and comparison of performance randomly selected 100
proteins from SWISS-PROT 4.2 release and then 10 peptides from each theoretical peptide pool.
Next, random error values among e = {-0.999, -0.998, , 0, , 0.998, 0.999}in the calculated mass of
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each selected peptide were added up for the test sets. These test sets were divided into the set by
molecular weight of a peptide (<1500Da~<4000Da) and that by molecular weight (0kD~200kD) of a
protein and each set was independently analyzed. It was assumed that missed cleavage was 0, mass
tolerance was 1Da and there was no modification. Consequently, as shown in Figure 2, AMWISE
demonstrated far higher performances than MOWSE. As shown in Figure 2(a, b), MOWSE showed
low accuracies of 40.4% (SWISS-PROT 4.2 release) and 12% (nr) in PMF with peptides of less than
1500Da. The accuracies of MOWSE were gradually improved in accordance with increases of
molecular weights of peptides. For peptides below 4000Da, the performances of SWISS-PROT 4.2
release and nr were improved up to 92% and 79%, respectively. This phenomenon in accordance with
peptide ranges also influenced on performances according to intact protein molecular weights. As
shown in Figure 2(c, d), as the sizes of proteins became larger, performances were gradually
decreased. Then, in the range between 190kD and 200kD, the accuracies in SWISS-PROT 4.2 release
and nr reached 57% and 31%, respectively. Meanwhile, as shown in Figure 2(a, b), AMWISE solving
underestimate on small peptides substantially made up for disadvantages of MOWSE. Then, it
demonstrated accuracies of 88% and 62% for SWISS-PROT 4.2 release and nr evenin peptide regions
below 1500Da and 97% and 91% for SWISS-PROT 4.2 release and nr in peptide regions below
4000Da, respectively. These accuracies were up to 47% and 49% higher than those in MOWSE for
SWISS-PROT 4.2 release and nr, respectively. However, the accuracies slightly depended on peptide
molecular weights even in AMWISE. This suggested that the underestimate issue was not completely
solved. As shown in Figure 2, the performances of fBIND didn't show significant differences as
compared to researches by Wool et al. It is because scoring method of Woolshowed higher
performances of 99.1% and 97.9% in average in accordance with peptide ranges and protein ranges,
respectively, when SWISS-PROT 4.2 release was applied, as shown in Figure 1. fBIND that
considered influences by increases of random hit rates in accordance with increases of peptide
fragments and repetitive sequences demonstrated higher performances as compared to researches by
Wool et al. As illustrated in Figure 2(a, b), the performances in accordance with peptide ranges were
99.6% and 97.1% for SWISS-PROT 4.2 release and nr, respectively, with increases of about 1% and
2% for SWISS-PROT 4.2 release and nr, respectively, as compared to study of Wool et al. The
performances in accordance with sizes of proteins were also improved. The performances were 99.6%
and 90.9% in average for SWISS-PROT 4.2 release and nr, respectively, with increases of up to 10%
and 7% for SWISS-PROT 4.2 release and nr, respectively, as compared to researches by Wool et al.

This study tried to identify proteins more accurately as improving existing algorithms and
analyzed significant transcription factor/motif analysis to provide useful information on identified
proteins. MATCH and PATCH of TRANSFAC, representative transcription factor analysis tools, are
very useful to find out transcription factors binding on specific sequences using position-specific

matrixes and patterns [12, 13]. Moreover, InterPro, the representative motif database, is important
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database collecting motifs in each protein [14]. However, all of them don't provide information on
how much important it is the contribution of transcription factors or motifs identified by those tools
and database on functions. In accordance with analysis of transcription factors existing on upstream of
yeast ORF by MATCH and PATCHin reality, it was observed that a number of transcription factors
were abundantly appeared regardless of specific functions including that HIF-1 was appeared up to
1614 times on total 5,406 upstream. Therefore, this study tried to analyze significant transcription
factors and motifs contributing on specific functions using cumulative hypergeometricprobability

distribution as described below.

First of all, yeast ORF and proteins were divided into relatively detailed function categories
of about 105 with reference to data annotated with respect to the process among GO terminology in
Saccharomyces Genome Database (SGD) [15]. Then, mapping of ORF region on chromosome was
conducted using sim4 to acquire transcription factors binding on upstream of ORF included in each
function category [16]. As reported by Zhu ef al., -1000 regions froma translation start site was
considered as upstream region and transcription factors in relevant upstream region were analyzed by
MATCH and PATCH [17]. Motifs of each protein were acquired from InterPro database.
Transcription factors and frequencies of motifs in each function category segmented into 105
categories were calculated and then, transcription factors andmotifs characteristically appeared in each

function category were analyzed through cumulative hypergeometric probability distribution as shown

)

N = Total number of ORF/proteins

below.

¥ =Number of ORF/proteins in a specific category

m_=Number of specific transcription factors/motifs identified in total ORF/proteins

I =Number of specific transcription factors/motifs identified in ORF/proteins in a specific category

When P{X 21} <0.001 satisfied, relevant motif is are considered as the motifs specifically generated
in specific function categories. Table 1 described the examples of transcription factors and motifs

specifically generated in each function acquired by the process above.

Table 1 describedmotifs and relevant characteristics existing in each protein. 013527 has integrase

motif as the protein included in DNA recombination among 105 segmented categories. As a result
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of analysis using cumulative hypergeometric probability distribution, integrase catalytic domain is a
specific motif that is appeared especially a lot in DNA recombination category and it is considered
that it contributes on the functions related to DNA recombination of O13527. This result is the
same as GO mapping results of InterPro. P00330 falls under GO:0006113 fermentation according
to GO mapping of SGD and includes in energy pathway, the upper category. Zinc-containing
alcohol dehydrogenasesuperfamily, a motif found in P00330, is especially appeared a lot in energy
pathway category, alcohol metabolism and aldehyde metabolism category. It contributes on
functions related to energy pathway of P00330 and has the possibility to take part in other functions
such as alcohol metabolism and aldehyde pathway. InterPro doesn't provide information on this
motif. In accordance with GO mapping of SGD, P00410 was mapped to GO:0009060 aerobic
respiration and included in energy pathway, the upper category. Copper center cu(A), an identified
motif, was a specific motif neither to energy pathway category nor to other categories. However,
cupredoxin, another motif, was appeared especially in the same category as P00410 and also the
specific motif in ion transport and response to abiotic stimulus category. As explained above, this
study provided information about contribution of motifs identified in each protein through
cumulative hypergeometric probability distribution on functions and suggested to broaden function
annotation more extensively. In accordance with annotation of yeast protein with respect to process
among GO mapping data of InterPro, about 53% of total yeast proteins could be annotated [18].
Meanwhile, when significant factor/motif analysis of this study was combined with InterPro, about

83% of total proteins were covered.

As large-scale protein researches have been analyzed, researches on instrument related to MS,
experimental techniques and PMF algorithm have been actively studied. In particular, we need the
algorithm to identify accurate proteins without being sensitive to experimental errors in order to
identify effective proteins. In accordance with the development of MS, a wide range of research
results from algorithms of simple matches to algorithms based on complicated probabilities has
been reported. Each algorithm demonstrates unique characteristics in accordance with scoring
methods. For example, MOWSE scoring method based on frequency that consists of mainly peptide
fragments show lower performances, but that with peptide fragments of high molecular weights
demonstrates significantly higher performances. Moreover, for PMF based on binomial distribution
presented in the researches by Wool ef al, the performance tends to be slightly decreased when
measured peptide is randomly matched to proteins with repetitive sequences. Consequently, this
study developed the system showing better performances as making up for scoring methods based
on MOWSE and binomial distribution among PMF algorithms that have been studied until now.
Furthermore, this study tried to provide information for interpreting peptide fingerprinting results
for researchers as analyzing significant factors/motifs related to regulations and activities of

identified proteins as well as for accurate identification of proteins. In the future, this study will
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provide information on AMWSIE and fBIND with respect to protein-protein interaction data and
protein  sub-cellular localization information. AMWISE and fBIND 1is available at
http://plant.pdrc.re kr:8888/peptMass/yeastPMF/ and supplementary information is available at

http://plant.pdrc.re kr:8888/peptMass/veastPMF/Instruction/mstruction.htmli

Figure 1. Performance Comparison of MOWSE and Wool ef al.'s study.

(a) Performance comparison of MOWSE (squares) and Wool et al's study (circles) according to
peptide ranges using SWISS-PROT 4.2 release; (b) Performance comparison of MOWSE (squares)
and Wool et al.’s study (circles) according to protein molecular weight using SWISS-PROT 4.2

release.

Figure 2. Performance Comparison of Algorithms.

(a) Performance of MOWSE (squares), AMWISE (diamonds), Wool ef al.'s study (circles) and fBIND
(triangles) in accordance with peptide ranges using SWISS-PROT 4.2 release; (b) Performance of
MOWSE (squares), AMWISE (diamonds), Wool et al.'s study (circles) and fBIND (triangles) in
accordance with peptide ranges using nr; (c¢) Performance of MOWSE (squares), AMWISE
(diamonds), Wool et al's study (circles) and fBIND (triangles) in accordance with protein
molecular weight using SWISS-PROT 4.2 release; (d) Performance of MOWSE (squares),
AMWISE (diamonds), Wool et al's study (circles) and fBIND (triangles) in accordance protein

molecular weight using nr.

Figure 1
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Table 1. Description about function specificity of motifs of protein that is within a

particular function category and comparison to InterPro GO mapping

This work was supported by a grant (CG1222) from Crop Functional Genomics Center, by a grant
(PF0300501-00) from the Plant Diversity Research Center of the 21st Century Frontier Research
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Research Institute of Bioscience and Biotechnology for the advice.
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An open source microarray data analysis system with GUI: Quintet

Abstract

We addressQuintet, an R-based unified cDNA microarray data analysis system with GUI.
Five principal categories of microarray data analysis have been coherently integrated in
Quintet: data processing steps such as faulty spot filtering and normalization, data quality
assessment (QA), identification of differentially expressed genes (DEGs), clustering of gene
expression profiles and classification of samples. Though many microarray data analysis
systems normally consider DEG identification and clustering/classification the most important
problems, we emphasize that data processing and QA are equallyimportant and should be
incorporated into the regular-base data analysis practices because microarray data are very
noisy. In each analysis category, customized plots and statistical summaries are also given
for users convenience. Using these plots and summaries, analysis results can be easily
examined for their biological plausibility and compared with other results. Since Quintet is
written in R, it is highly extendable so that users can insert new algorithms and experiment
them with minimal efforts. Also, the GUI makes it easy to learn and use and since
R-language and its GUI engine, Tcl/Tk, are available in all operating systems, Quintet is
OS-independent too.

Introduction

DNA microarray is the de facto standard technology for high-throughput functional genomics
in the post-genomic era [1]. Since the microarray experiment is highly evolved and requires
muiltiple handling steps each of which is a potential source of fluctuation which undermines
the reliability of the data itself [2], much effort has been exerted to understand the sources of
variability and minimize them to produce high-quality reproducible data [3].

In order for this technology to be fruitful, however, reliable analysis of the data is as important
as the production of high-quality data itself. Due to the high-throughput character of the
microarray data, this requires maturity in numerous statistical techniques, not to mention the
data processing chores. Also required is the dexterity in scrutinizing various pertinent
biological information so that one can successfully reconstruct the 'big picture"of biological
processes fragmentally reflected in the data. Considering these, a system that can provide
analytic capability as well as informatic capability is crucial for an effective, versatile analysis
of microarray data. In addition, since many new approaches appear almost daily by
researchers, an ideal system should be extandable enough so that new techniques can be
experimented with minimal efforts.
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In this article, we present an R-based unified ¢cDNA microarray data analysis system,
Quintet, the first result of our on-going project to build up a customized microarray data
analysis suite. As the name suggests, th five indispensable categories of data analysis have
been coherently integrated in Quintet: data processings including filtering and normalization,
customized set of data quality assessments (QAs), identification of differentially expressed
genes (DEGs), clustering of gene expression profiles, and classification of samples using a
small set of gene expression patterns.

Though many microarray data analysis systems claim DEG identification and
clustering/classification the most important problems, we emphasize that data processing
and QA are equallyimportant and should be incorporated into the regular-base data analysis
practices because the microarray data are quite noisy [2, 4]. Under this rationale, some set of
data processing and QA procedures are implemented in Quintet and constitute the core
functionality moduleof Quintet. Quintet is written in R which is virtually the standard platform
for microarray data analysis now. Since many new algorithms are also written in R, they can
be inserted into Quintet without much trouble andusers can extend its functionality for their
own needs. The GUI makes it easy to learn and use Quintet. Furthermore, Quintet is
OS-independent since R-language and its GUI engine adapted for Quintet, Tcl/Tk, are
available in all operating systems.

Overview of Quintet: Data Analysis Model
Figure 1 is about here.

A simplified data analysis model we have projected in Quintet is depicted in Figure 1. In this
Figure, procedures that are carried out in Quintet are depicted in colored boxes. We have not
implemented any image analysis functionality in Quintet and the data analysis starts from a
set of text slide data files. According to our experience, the absence of image analysis
module does not cause muchtrouble since every scanning software has a mechanism to
export slide data into text formatfiles and detailed examination of data variables, not the
visual inspection of microarray images, provide thorough understanding of microarray data.
Quintet retains all the variables that scanning softwares provide for each gene since
previously unused variables may turn out to be important for particular purposes, especially
in QA steps. For example, a popular microarray image analysis software from Axon
Instruments [5], GenePix, providesy 43 variables for each gene, which enables a detailed
understanding of spot intensities and their characteristics.
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For each slide data, we first mark genes that are doubted to be erroneous from various
criteria. Then, we check the quality of each slide data using various plots and statistical
summaries. The error spot flagging and QA procedures should be iterated until no further
quality improvements are evidenced. We consider the inter-operation of data processing and
quality improvement check is very important to avoid data "over-processing” since any data
processing can introduce unwanted artifacts which cannot be amended in downstream
analysis steps. We apply normalization procedures to remaining genes according to the
algorithm developed by Yang et al. [6]. This is an effort to remedy systematic artifacts that
may have been introduced by signal extraction procedures. Normalized data are the basis for
downstream analysis steps like DEG identification and clustering/classification.

Downstream analysis steps are quite straightforward.First, DEGs are identified. Since DEGs
constitute basic elements for subsequent analysis steps, reliable identification of DEGs is of
utmost importance. Furthermore, since different algorithms produce different DEG sets,
multiple algorithms are supplied in Quintet and users can select their own DEG set among
them based on the statistical characteristics revealed by auxiliary plots provided in Quintet.
Using the identified DEGs, a gene expression matrix is constructed and
clustering/classification is carried out. As such, the DEG identification procedure is a
dimension-reduction step in this sense. In clustering/classification, we also supplied multiple
algorithms and users can experiment different algorithms to survey possible variations in
clustering/classification results.

Data organization

Figure 2 is about here.

Schematic data organization assumed in Quintet is appeared in Figure 2(a). In general, a
microarray experiment is composed of multiple stages. For example, each time point can be
considered as a stage in the case of time-series experiments [7] and each individual
condition can be considered as a stage in the case of experiments composed of multiple
conditions [8]. Furthermore, each stage is usually composed of multiple slides. Some slides
in the stage can be replicates and the others can be dye-swaps.

Since the number of stages and data compositions in each stage can be arbitrary, we
needed a simple but flexible method to import all necessary slides at one stroke. At the same
time, the stage-slide relationship should be stored also. For this purpose, simple
configuration file approach is used in Quintet (Figure 2(b)). This configuration file is a simple
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text file with each line composed of 4 columns. In this file, stage information appears in the
first column, experiment types (replicate/dye-swap) in the second, full paths of slide data file
in the third and slide aliases to be used internally in Quintet in the last column. Replicates are
designated by 'A' while dye-swaps are designated by 'B' in the second column. Using this
information, all relevant slide data are imported into Quintet in a batch mode. The data
organization is stored for later use also.

QA Module

QA of microarray data has not been considered as an important problem of micorarray data
analysis by itself, which explains the lack of established standard procedure for QA.
However, QA can be a decisive factor in establishing the reliability of analysis results
performed using highly evolved algorithms because 'nothing can compensate for poor-quality
data regardless of the sophistication of the analysis'[4]. Furthermore, QA itself is very
important in constructing large centralized databases andcollecting gene expression data on
a comprehensive scale since data sharing can be drastically restricted without quality
assurance [9, 10, 11].

Figure 3 is about here.

In Quintet, QA module is one of the five core functional module. Although there is no
established procedure for QA and methods implemented in Quintet are rather exploratory,
QA methods implemented in Quintet were very successful in understanding the data quality
according to our experience. QA module relies heavily on various statistical plots and
summaries of particular variables like spot intensities, background intensities and log ratios.
Some major plots used in QA module are depicted in Figure 3. In Figure 3(a), we show a
scatter plot between background-corrected green intensity and background-corrected red
intensity of a slide in log-log scale. Though we show a scatter plot between green and red
intensities, any combination of variables can be used, which can be very useful in exploratory
investigation of data characteristics. In Figure 3(b), we show an AM (average intensity vs log
ratio) plot. Log ratio of a spot is given by M=log2R/G and average intensity by A=(log2RG)/2.
What is well-known is that this plot is the 45 degree clock-wise rotation of Figure 3(a) and it is
much easier to apprehend the data characteristics because the diagonal line in Figure 3(a) is
now a horizontal line at y=0. Since only a small number of genes is assumed to be
differentially regulated in any microarray experiment, we can check if the main axis of data
distribution is distorted through this plot and determine if data normalization of this slide is
necessary. In Figure 3(c), we show a 2D image plot of spot log ratio values for a slide.
Through this plot, we can check whether the data distribution shows any spatial bias due to
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improper treatments in data handling steps. In Figure 3(d), we show a block-by-block box
plot of log ratio values for a slide. This plot shows block-by-block variability level of log ratio
values within a slide and we can determine ifblock-wise centering and block-wise scaling of
log ratios should be carried out to the slide. In Figure 3(e), we show a pairs plot of log ratio
values and correlation coefficients among a group of slides. Through this plot, we can check
if there is a clear distinction between the data distributions between replicates and those
between independent slides. This result is very useful since it is directly related to the
reproducibility and specificity of microarray data under analysis. In (b) to (e), any numerical
variables other than log ratio can also be used instead.

In assessing the data quality of a slide, replicated genes can provide the clearest information
since, though spotted at various positions within the same slide, they should show very
similar behavior in every aspect. Position-dependent dissimilarity and variability between
variables of the same replicated genes can be used as a quality measure. Because of this,
we implemented two special menus to examine the characteristics of replicated genes. We
classify replicated genes into two types: controls and simple duplicates. Genes that are
repeatedly spotted for special purposes are called controls and genes that are replicated
without such consideration are called simple duplicates. Examples of control genes are the
positive or negative controls defined by Schena [12] and other controls used for defining
reference differentialexpression levels [13]. Therefore, by comparing the observed differential
expression levels of control genes with their expected differential expression levels and by
measuring the variability of observed differential expression levels over control genes
representing the same reference level, we can estimate the quality of accuracy in differential
expression levels recorded for a slide. Contrary to this, simple duplicates cannot be used to
estimate the data quality by measuring discrepancy between the observed and expected
differential expression levels, However, they can be used in assessing data quality by
examining the correlation of variables between values obtained from different positions.

Figure 4 is about here.

In Figure 4, we show sample plots for controls and simple duplicates generated in Quintet. In
Figure 4(a), we show a background-corrected green intensity vs background-corrected red
intensity scatter plot for control genes along with the scatter plot for all genes. Different
control genes are depicted in different colors so that they can be differentiated easily.
Unfortunately, the control genes are not used to indicate specific reference differential
expression levels in this case and they align along the diagonal line. In Figure 4(b), we show
an AM plot for control genes along with the AM plot for all genes. Though the control genes
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seem to align along the diagonal line in Figure 4(a), they show discernable deviation from the
horizontal red line in Figure 4(b). The log ratio distributions of all control genes are shown in
Figure 4(c) using a box plot. From this Figure, we can notice that some of control genes,
especially those whose average intensity is small, show deviations from 0. Similarly, if control
genes are used as specific reference differential levels, the discrepancy between observed
differential levels and expected differential levels and the amount of fluctuations of observed
differential levels of a control gene from its mean value can be used as a definite evidence of
data quality. In Figure 4(d), we show a sample self-vs-self red intensity scatter plot of
duplicated genes. Contrary to what is expected, this self-self scatter plot does not show clear
correlation (correlation coefficient = 0.1), which means that the data quality seem to be
doubtful. There are other plots to help users understand the distribution of differences
between values of the same duplicated gene in Quintet.

Data Processing Module

Quintet's data processing module is composed of two parts: spot preprocessing and data
normalization. In spot preprocessing part, Quintet filters out faulty spots that can undermine
the reliability of analysis results. What actually takes place is that Quintet marks suspicious
spots based on several criteria separately and keeps all the mark results so that users can
select a suitable combination of error flags under their own discretion. In normalization part,
Quintet carries out the local regression (LOWESS) fit normalization procedures developed by
Yang et al. [6] to remaining spots.

Following list of flagging criteria are supplied in Quintet:

® BG error: spots whose local background intensities are larger than spot intensities in
any of the dyes are marked as errors. Since each spot is composed of many small
pixels, Quintet normally uses the median of pixel intensities in spot region as the
representative spot intensity and the median of pixel intensities in local background
region as the representative local background region.

® Maximum intensity error:spots whose spot intensities reach the scanner detection
limit in any of the dyes are marked as errors because, for these spots, we are not
able to say whether such spot intensities are exactly the scanner maximum limit or
beyond it.

® Control spots

® Original error:spots that experimenters marked already are automatically flagged as
errors. Normally spots that are marred by dusts, finger prints and scratches are
marked.

® SNR (signal-to-noise ratio) error:spots whose ratio between background-corrected
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intensity and local background intensity is smaller than a user-specified threshold are
marked as errors. Although all spots marked as SNR error spots may not be
considered as errors, credibility of analysis results can be gained by excluding less
informative spots.

® Outlier error [4]:spots whose log ratio differences (sums) between two replicated
(dye-swapped) slides of a stage deviate from the expected value, 0, are marked as
errors. These error spots clearly represent the results of inconsistency during
experimental procedures and should be removed from further analysis.

® Median-vs-mean ratio error [14]:spots whose ratio between the mean signal
intensity and median signal intensity in any of the dyes is smaller than a
user-specified threshold are marked as errors. This criterion is inspired by the result
in Tran et al. [14], which claims that 'a simple ratio between the mean and median
signal intensities may be the best way to eliminate inaccurate microarray signals'.

® FG-vs-BG error [15]:spots whose statistical test between the spot region pixel
intensities and the local background region pixel intensities do not show clear
distinction are marked as errors. In Quintet, t-test is used.

After removing error spots, remaining data should be normalized to minimize systematic
variations in the measured gene expression levels. What we hope is that biological
differences can be more easily distinguished, as well as the comparisonof expression
levels across slides can be accomplished more easly as a result of normalization. The
procedure that is implemented in Quintet is basically the one developed by Yang et al.
[6]. This normalization procedure is composed of three parts:pin-block centering,
pin-block scaling and file scaling. Pin-block centering is used to correct the distortions in
main axis of the AM plot by applying the LOWESS fit to the AM values of genes located
within each print tip group of a slide. Then, pin-block scaling is carried out to reduce
variations of log ratio variances across pin-blocks of a slide by multiplying
pin-block-specific scaling factors. Finally, file scaling is carried out to reduce variations of
log ratio variances across files by multiplying file-specific scale factors. In pin-block
scaling and file scaling, scaling factors are calculated using median absolute deviations
(MAD) [6].

To these basic normalization procedures, we supplemented another step in Quintet: global
normalization of average intensity A. This is motivated by the fact that the DEG
identification in cDNA microarrrays should be based on comparison between values of
log2R and log2G. However, if only log ratio M values are normalized, large variations in
average intensities willmask the true difference between log2R and log2G, which would
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result in high levels of false positives and false negatives. To avoid this problem, we
should normalize average intensities as well as log ratios. The procedure proceeds like
this: first, the A value scales of all slides are normalized through file-specific scale factors
calculated using MAD. Then, resulting A vaiues are adjusted so that the median A of all
genes in each slide becomes the mean of median A values of all slides. Results before
and after the global Anormalization is shown in Figure 5 (a) and (b). In DEG
identification, /og2R and /og2G values are restored from normalized A and M values.

Figure 5 is here.

The global normalization of average intensity is performed to all slides under analysis in
Quintet. However, other three basic normalization procedures are selectively applied to
individual slides based on a user-specified configuration. Based on QA resuits, users
should classify slides into three groups: pin-block centering group, pin-block scaling
group and removal group. As the name suggests, pin-block centering wil be performed to
the first group, pin-block scaling will be performed to the second group and slides in the
third group will be removed from further analysis due toquality problems. This
classification is possible since QA results give clear view of the type of normalization
procedures that should be applied to individual slides. File scaling is performed
afterwards if necessary. Data transformations after each normalization step can be
examined using a set of statistical plots in Quintet. These diagnostic plots include scatter
plot, AM plot, inter-slide box plot, histogram and pairs plot.

Figure 6 is here.

In Figure 6, results of normalization procedures are summarized. Figure 6(a) shows AM plots
before normalization, after normalization without global A normalizationand after full
normalization. Figure 6(b) shows corresponding RG scatter plots, respectively. Yellow lines
in Figure 6(a) depict LOWESS fit lines between average intensity and log ratio. These plots
clearly show that systematic trends in AM data are largely corrected. Furthermore, plots in
Figure 6(b) show the global A normalization works quite well, comparing plots before and
after normalization. Especially, the green and red intensities show similar distribution range
without much change in data distribution characteristics.

The rationale of Quintet's data processing module is that though the data processing

procedures are expected to remove non-biological artifacts and to remedy data distortions
that occurred during data preparation and signal acquisition steps, it is also highly probable
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that they introduce unwanted new artifacts into the data. Therefore users should be very
cautious to avoid "over-processing"the data and every data processing result should be
checked for its legitimacy using suitable examination procedures.

DEG ldentification Module

DEGs are genes whose expression levels show clear difference between reference and
experiment samples. Since observed differential expression is normally interpreted as a
result of biological response to the experimental condition under study, the DEG identification
is one of the most crucial tasks of microarray data analysis. Because of this, many DEG
identification algorithms have been developed, and we are trying to supply as many available
algorithms as possible in Quintet.

One perplexing factor while implementing DEG identification algorithms in Quintet is the
number of replicates in each comparison unit since some algorithms can be applied only to
single slides (single-slide algorithms) while others intrinsically need multiple slides
(multiple-slide algorithms). Therefore multiply-replicated comparison units cause another
complication for single-slide algorithms. Furthermore, since we cannot measure the level of
confidence without replicates [16], single-slide algorithms are of limited value compared with
multiple-slide algorithms. Nevertheless, we have included some single-slide algorithms in
Quintet since, in general, they are easy to implement and their results are easy to interpret
and gain in reliability can be achieved by imposing more stringent cutoff values. In addition,
the absence of statistical significance should not prevent single-slidealgorithms from being
utilized because comparison units in most published microarray data so far are single slides
whose results have been quite successful in elucidating various previously unknown global
genetic pictures.

Currently, the following algorithms are implemented in Quintet:
® Fold change type: genes whose differential expression levels are beyond a cutoff
value are declared as differentially expressed in fold change type algorithms.

Multiple algorithms can be categorized into this type.

n Generic algorithm:in generic fold change algorithm, genes whose log ratios
are beyond a user-specified cutoff value are selected as DEGs. This is the
oldest algorithm for selecting DEGs and still widely used by many researchers
though criticisms have been filed by many researchers [17].

n Z-test type:z-scores in statistics measure the number of standard deviations
a data point is away from the mean. In z-test type algorithms, genes whose
z-transformed log ratios are beyond a cutoff are selected as DEGs [4]. Two
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types of z-tests are implemented in Quintet: global z-test and local z-test. In
global z-test algorithm, standard deviation is calculated using log ratios of
whole-slide. Therefore the global z-test is essentially the same to the generic
fold change algorithm. The difference between the two algorithms lies on the
cutoff. In the case of generic fold change aigorithm, the cutoff is given in the unit
of fold change while the cutoff is given in the unit of standard deviations in the
case of global z-testt To the contrary, the localz-test reflects the
intensity-dependent change of variability by applying z-test to groups of genes
clustered according to their intensity levels [18].
| Sapir-Churchill algorithm:Sapir and Churchill [19] applied EM algorithm to
residualsfrom orthogonal regression and separated them into common and
differentially expressed components. Though internal details are quite different
from the generic fold change approach, resulting cutoff is given by two horizontal
lines symmetric to y=0 in theAM plot, similar to the generic fold change
approach.
® Newton's algorithm:Newton et al. [20] considered the problem of inferring fold
changes in gene expression from cDNA microarray data within a Bayesian
hierarchical model and significant expression changes are identified by deriving the
posterior odds of change. Though original algorithm considers only single slides,
recent generalization in an R package, YASMA, dissolves this restriction [21]. This
generalized version is implemented in Quintet.
® T-test [22]:t-test is a representative parametric hypothesis test method assessing
whether two groups of data are statistically different from each other or not. In
Quintet, the comparison groups can be two-color fluorescence signals as well as log
ratios in two different experimental samples.
® Wilcoxon rank sum test (RST) [23]: Wilcoxon RST is a non-parametric analogue of
t-test which permits robust hypothesis testing between two groups. According to
Troyanskaya et al. [23], this test algorithm appears to be very conservative and can
be advantageous when subsequent biological validation procedures are concerned.
® Significance analysis of microarrays (SAM) [24]:SAM identifies DEGs using a
statistic similar to t-score and statistical significance estimation using permutations of
repeated measurements. Although the algorithm is similar to the t-test, it also gives
the level of false discoveries called false discovery rate (FDR [25]) by identifying
nonsense genes through the permutations, which makes it popular in recent years.

Since these algorithmsare based on statistical arguments, false positives and false negatives
cannot be avoided. Furthermore, according to our experience, different algorithms
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produce different DEG resuits, which makes the identification of optimal DEG set very
difficult. Therefore one shouldbe very careful in interpreting the result of any single
algorithm and we strongly recommend users to try to use as many different algorithms as
possible and compare them very cautiously to get a robust resuit. For this reason, we are
trying to implement as many availableDEG identification algorithms as possible in
Quintet. In addition, we are developing a method to integrate the results of individual
algorithms, hoping to get more robust set of DEGs thinking that only robust DEGs not
false positives and false negatives of each algorithm will be will be selected by many
different algorithms.

Figure 7 is here.

In Quintet, we also supplement auxiliary plots to help users get intuitive understanding of
statistical characteristics of the DEG set under consideration. In Figure 7, we show some
of the plots. In Figure 7(a), we show the average AM plot where x-axis (y-axis)
represents the average of A (M) values. In this plot, DEGs are represented in red while
all other genes are represented in green. Therefore one can gain a rough understanding
of statistical characteristics of DEGs from this plot. If more detailed information of DEGs
is desired, one can turn to the box plot shown in Figure 7(b). In this plot, the distribution
of log ratios for each DEG is represented in a box. Combining theplots shown in Figure
7(a) and (b), one can understand DEG characteristics more thoroughly, which will be of
help in determining optimal DEG sets.

Clustering Module

Clustering is one of the most widely used methods in gene expression analysis [4, 7]. The
rationale is that when genes are grouped into clusters according to their levels of
similarity in expression profiles, the co-expression of genes within each cluster can be
interpreted as a result of co-regulation, which provides greater insight into their biological
relationship. For instance, if two or more genes have similar expression patterns in
different experimental conditions or at different time points, these genes may be
co-regulated and even be functionally related. Furthermore, as transcription is regulated
mainly by the binding of transcription factors (TFs) to the promoter region, clustering of
gene expression profiles can be very useful in identifying cis-regulatoryelements in the
promoters, providing more insight to gene function and regulation networks [26]. Recent
breakthrough in this line of approach has made it possible to infer condition-specific
regulatory modules in a simple eukaryote by combining clustering results and
cis-regulatory element patterns in promoter regions under a probabilistic graphical model
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[27}.

When experimental samples are clustered using gene expression profiles, it is an
unsupervised learning (also known as class discovery in pattern recognition) problem
where a prioriunknown number of classes among sampies should be identified using
gene expression profiles. This problem is of an utmost practical importance since it is
directly related to disease classification using gene expression profiles [28, 29]. Most
current disease classifications are primarily based on phenotypic characteristics. As
such, current disease classes cannot explain markedly different clinical courses and
treatment responses observed among patients with the same disease. Since gene
expression profiles represent a molecular portrait of biological mechanism, disease
sample clustering based on gene expression profile can be advantageous. In particular,
clustering disease samples can elucidate previously uncharacterized disease subtypes,
which can be beneficial in diagnosing disease types or disease progress stages.

Since the seminal work of Eisen et al.[7], clustering has been extensively used in microarray
data analysis and culminated a lot of successful results. The spectrum of clustering
algorithms that has been used in microarray data analyses is very wide. This entails
novel algorithms such as self-organizing maps (SOM) [30], clustering affinity search
technigue (CAST) [31], minimum spanning tree (MST) [32] as well as conventional
algorithms such as hierarchical clustering[7] and k-means clustering [33], to mention a
few. Because of this, many non-commercial and commercial systems regard clustering
module as their core functionality [34, 35] and Quintet provides following clustering
algorithms currently:
® K-means clustering: starting from Krandomly chosen organizing centers
(centroids), this algorithm iterates between two steps. First it tries to partition
elements so that the summation of distances from each elementto its nearest
centroid becomes minimum. Then Kcentroids are recalculated using present cluster
partition. In each cluster, centroid is given by the mean of all elements. This is a
greedy algorithm and every expression profile is assigned to one of the clusters.

® Partitioning around medoids (PAM) clustering [36]:PAM clustering is very similar
to the K-means clustering. In the case of PAM clustering, a medoid is given by the
median of all elements contained in a cluster. Therefore, the clusters are quite robust
and exceptional elements within a cluster do not contribute much in calculating the
medoid.

® Hierarchical clustering:contrary to K-means and PAM clustering, this is an
agglomerative clustering algorithm, by iteratively merging two most similar clusters at
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each step until all elements form one large cluster. Initially each element is assigned
to its own cluster. Since there are many different ways to merge two most similar
clusters, this should be specified in advance. In Quintet, only the most common
merging methods are implemented: single linkage, complete linkage, and average
linkage [37].

® Self-organizing map (SOM) clustering [30, 38]:SOM is an unsupervised neural
network algorithm trying to find prototype vectors that represent the input data set
and continuous mapping from input to a lattice at the same time. The lattice structure
is self-organized according to the weight vectors assigned to each lattice point,
starting from random positions. As a result of self-organization, similar vectors come
close to each other in the lattice while dissimilar ones move away from each other.

® Clustering affinity search technique (CAST) [31]: CAST is a kind of adaptive
agglomerative clustering algorithm. Among unassigned elements, elements whose
average similarity(affinity) from the current cluster core does not damage the cluster
coherence will be added to it. However elements whose affinity from the cluster core
is below a tolerance level will be removed from the cluster among elements assigned
to the current cluster. The addition and removal steps will be iterated until a stable
cluster results are obtained.

Despite its popularity, there remain lots of statistical issues on the clustering of gene
expression data [39] and it is very difficult to choose which cluster results to use in
subsequent analyses without supplementary information since different clustering
algorithms produce differentclusters. Currently, we are working on this problem in two
directions. First, we are trying to develop an algorithm to compare results from different
clusters and produce a robust one. Second, we are trying to implement a module
supplying cluster validation measures and determine optimal cluster result based on
them.

Clustering results are presented in several different forms in Quintet. First, individual clusters
are reported in separate text format external files with corresponding differential
expression levels so that users can scrutinize individual genes contained within each
cluster in detail and use clustering results in other programs. Second, clusters are
depicted in several plots. Typical plots normally adopted in cluster representation are
shown in Figure 8. The dendrogram attached 2D image plot shown in Figure 8(a) is the
most well-known representation format of hierarchical clustering. For non-agglomerative
clustering algorithms like K-means clustering, only the 2D image plot is shown in Quintet.
However, according to our experience, line plots shown in Figure 8(b) are more
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informative since detailed comparison of expression profiles is possible. The red line in
each line plot designates the mean expression profile of corresponding cluster. The
projection plot shown in Figure 8(c) is another convenient plot that can be used to check
if clusters are well-separated in low-dimensional plots using a few principal components.
As such, this plot can be used as a kind of cluster validation measure.

Figure 8 is here.

One often-neglected chore in clustering is the construction of gene expression matrix (GEM)
based on the results from upstream analysis such as DEG identification. Though this
seems simple, one needs to decide two things. First, one needs to select the genes that
should be included in the GEM. If all the genes are used, genes that remain in their basal
expression level increase noise in clustering, which results in unreliable clusters.
However, if only DEGs are used, since DEG sets from different stages are different, one
needs to decide which DEGs to be included in GEM. In Quintet, if only DEGs are used,
genes that show differential expression in any of the stages are included in GEM
construction by default. Second, one has to decide whether missing values should be
filled up using some surrogate values or not while constructing GEM [40]. Although
missing value imputation may not be justifiable from biologicalpoint of view, one has to
discard substantial amount of genes without it just because only a few stage values are
missing. We are implementing the weighted k-nearest neighbor imputation algorithm
(KNNimpute)now but recommend that this procedure should be used very cautiously
since unwanted artifacts can be introduced and affect the result. This algorithm is
selected because many researchers report that KNN works better than other competing
algorithms [35, 40]

Classification Module

Classification is a process assigning objects to known classes based on the measurements
made on it. In microarray data analysis, objects that should be classified are
experimental samples and measurements are gene expression profiles. For example,
classifying tissue samples according to their gene expression profiles has produced
promising results for cancer diagnostics [28, 29]. Since accurate diagnosis can affect the
treatment course and the probability of survival, the tissue sample classification based on
the gene expression profile has a tremendous practical importance. Also, expression
profile based disease classification can be used as a generic framework for disease
diagnosis, contrary to simple morphology based disease classification. Furthermore,
since classification based on gene expression profiles will provide a genomic view of
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molecular mechanism involved in the phenotypic disease progress, distinctive
expression profiles can be used as a molecular portrait of a disease and genes that
show clear difference between two molecular phenotypes can be used as disease
markers.

Typical sample classification is carried out in multiple steps. First, genes that show
distinctively different expression levels between samples in one class and those in the other
are selected since the majority of genes are assumed to exhibit basal expression levels
across samples. This gene selection process is exactly what we do in the DEG identification
step and the DEG identification module is used for this job in Quintet. These selected genes
are used in the gene expression matrix assumbly. Then, classification function (classifier) is
constructed using samples whose class relationship is known. The samples whose class
relationship is known comprisethe learning set (LS) while samples whose class relationship
is unknown comprise the test set (TS). Choosing a classifier, the error between predicted
and true classes in LS is exhaustively refined to obtain the most optimal parameters. Finally,
classes of samples in TS are predicted using the classifier.

There are many good candidate classifiers already [41] and the following list of algorithms is
implemented in Quintet:

® Fisher linear discriminant analysis (FLDA): FLDA is a method to find a linear
transform of measured multiple variables such that linear transformations of gene
expressions drawn from two classes are separated as widely as possible. Because
of its simplicity, FLDA is the most popular approach in classification.

® Maximum likelihood discriminant analysis (MLDA):in MLDA, an object is
assigned to a class to which the class membership conditional probability (likelihood)
of that object is maximum. Generally, the conditional probability density functions are
given by multivariate normal functionsand the MLDA can be subdivided into three
special cases: class probability functions with the same covariance matrix, class
probability functions with diagonal covariance matrix, and class probability functions
with the same diagonal covariance matrix. The first case is the FLDA given above,
and latter two cases are referred as diagonal quadratic discriminant analysis (DQDA)
and diagonal linear discriminant analysis (DLDA), respectively.

¢ K-nearest neighbor (KNN) method:in KNN, an object is assigned to a class which
the majority of Knearest objects are belonged to. The distance between two objects
can be Euclidean distance or one minus Pearson correlation. The number Kis
selected by optimizing error rates in learning phase.

® Classification and regression tree (CART) [42]: CART is a binary tree classifier
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which  builds classification and regression trees depending on the type of
measurement variables. If the measurement variable is categorical then
classification trees are created and if the measurement variable is continuous then
regression trees are created. At each non-terminal node, binary segregation of
measurement variables takes place and each terminal node contains the label of a
class to which an object is assigned. Though CART is rather algorithmically involved,
it is widely used in classifying objects since the results are quite intuitive.

® Artificial neural network (ANN) [43]:ANN is a collection of interconnected model
neurons that emulate some of the observed properties of biological neurons which
work as basic information processing units in mammalian brain. The network
structure is designed to imitate the learning process in biological systems where the
synaptic connection weights between neurons are altered to represent knowledge
contained in thelearned examples. In the learning phase, synaptic weights are
modified to reduce the errors between predicted and true class memberships. In this
way, the connection weights are used as the knowledge base necessary to classify
un-learned samples.

¢ Support vector machine (SVM): SVM is one of the most recent developments in
pattern recognition field as a general purpose tool for feature classification [44]. It
tries to separate a given set of two-class training data with a hyper-plane and, if such
linear separation is impossible, it tries to build a hyper-plane classifier in a
high-dimensional 'feature space' to which each measurement data is projected using
a non-linear mapping function (kernel). SVMs have been shown to perform well in
many areas of biological analysis [45, 46] and have also been quite successful in the
analysis of microarray data [47, 48].

Though Quintet can handle only two-class classification problems now, efforts to incorporate
muitiple-class classification problems are underway. In the course of refining classifiers
in learning phase, one needs to minimize errors between known class assignments and
predicted classes. Since only the class assignments of learning set is usually known, one
randomly splits the learning set into two classes, pseudo learning set and pseudo test
set, constructs classifiers using the pseudo learning set only and estimates the error rate
using the pseudo test set. In Quintet, the random separation of learning set can be
selected between two different ways: cross-validation and test-train set type. In the
cross-validation type learning, the learning set is divided into K subsets (K-fold cross
validation) of equal size from the start. The classifier is then learned at K times, each
time using one subset in turn as a test set. To the contrary, in the test-train set type
learning the learning set is divided at every turn into two different subsets (pseudo
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learning set and pseudo test set) and the classifier is learned using the pseudo learning
set while the error rate is estimated on the pseudo test set. This whole process is
repeated a number of times to calculate the error rate distribution.

Besides the core classification functional module, Quintet supplies auxiliary plots to be used
in assessing the performance of specific classifiers. In Figure 9, we show some of the
plots. In Figure 9(a) and (b), we show the error rate profiles calculated through
cross-validation and train-test set type learning as the parameter K is varied in KNN
classification, respectively. Conferring to theerror rate profiles shown in Figure 9(a) and
(b), one can select the optimum value of K. Figures 9(c) and (d) depict the 2D image and
projection view of gene expression matrix used in classification at the optimum value K,
respectively. It is clear that the test set samples should be members of the class 1. The
error rate profiles across different classification algorithms at their respective optimum
parameters are shown in Figure 9(e). This can be used as a measure of classifier
performance.

Conclusion

Quintet is an unified cDNA microarray data analysis system capable of carrying out five
indispensablecategories of microarray data analysis seamlessly: data processing steps
such as faulty spot filtering and normalization, data quality assessment, identification of
differentially expressed genes, clustering of gene expression profiles and classification of
samples. Though many existing tools of microarray data analysis emphasize their
capacity to carry out three core categories of data analysis (DEG identification, clustering
and classification), Quintet is geared to perform data preprocessing and QA also. In
particular, QA is crucial for enhancing the reliability of analysis results and sharing gene
expression data using centralized data bases since nothing can compensate for
poor-quality data no matter how sophisticated the analysis is. We insist that data
processings and QA should be incorporated into the regular-base data analysis
practices. To help users intuitively understand data characteristics, we provide lots of
plots and statistical summaries. In addition, since Quintet is written in R, it is highly
flexible so that users can experiment new algorithms in Quintet with minimal efforts. Also,
the GUI will make it easy to learn and use Quintet and since R-language and its GUI
engine, Tcl/Tk, are available in all operating systems, Quintet is OS-independent.
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intensities, (b) RI (log ratio vs average intensity) plot, (c) 2D image plot of spot log ratio values, (d)

block-by-block box plot of log ratio values of a slide, (e) pairs plot of log ratios with correlation

coefficients among a group of slides.
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this case, the two samples are classified as members of class 1. (c) Projection view of slides in
learning sets and test sets using first two principal components.
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